gauss8¶
- mdhelper.fit.gaussian.gauss8(x: ndarray, a1: float, b1: float, c1: float, a2: float, b2: float, c2: float, a3: float, b3: float, c3: float, a4: float, b4: float, c4: float, a5: float, b5: float, c5: float, a6: float, b6: float, c6: float, a7: float, b7: float, c7: float, a8: float, b8: float, c8: float) ndarray [source]¶
Convenience function for the
gauss8
model from MATLAB.\[y=a_1\exp{\left[-\left(\frac{x-b_1}{c_1}\right)^2\right]} +a_2\exp{\left[-\left(\frac{x-b_2}{c_2}\right)^2\right]} +\cdots+a_8\exp{\left[-\left(\frac{x-b_8}{c_8}\right)^2\right]}\]- Parameters:
- xnumpy.ndarray
One-dimensional array containing \(x\)-values.
- a1float
Amplitude \(a_1\) of the first Gaussian term.
- b1float
Centroid \(b_1\) of the first Gaussian term.
- c1float
Peak width \(c_1\) of the first Gaussian term.
- a2float
Amplitude \(a_2\) of the second Gaussian term.
- b2float
Centroid \(b_2\) of the second Gaussian term.
- c2float
Peak width \(c_2\) of the second Gaussian term.
- a3float
Amplitude \(a_3\) of the third Gaussian term.
- b3float
Centroid \(b_3\) of the third Gaussian term.
- c3float
Peak width \(c_3\) of the third Gaussian term.
- a4float
Amplitude \(a_4\) of the fourth Gaussian term.
- b4float
Centroid \(b_4\) of the fourth Gaussian term.
- c4float
Peak width \(c_4\) of the fourth Gaussian term.
- a5float
Amplitude \(a_5\) of the fifth Gaussian term.
- b5float
Centroid \(b_5\) of the fifth Gaussian term.
- c5float
Peak width \(c_5\) of the fifth Gaussian term.
- a6float
Amplitude \(a_6\) of the sixth Gaussian term.
- b6float
Centroid \(b_6\) of the sixth Gaussian term.
- c6float
Peak width \(c_6\) of the sixth Gaussian term.
- a7float
Amplitude \(a_7\) of the seventh Gaussian term.
- b7float
Centroid \(b_7\) of the seventh Gaussian term.
- c7float
Peak width \(c_7\) of the seventh Gaussian term.
- a8float
Amplitude \(a_8\) of the eigth Gaussian term.
- b8float
Centroid \(b_8\) of the eigth Gaussian term.
- c8float
Peak width \(c_8\) of the eigth Gaussian term.
- Returns:
- fitnumpy.ndarray
Fitted \(y\)-values.