NumbaAnalysisBase

class mdhelper.analysis.base.NumbaAnalysisBase(trajectory: ReaderBase, verbose: bool = False, **kwargs)[source]

Bases: SerialAnalysisBase

A Numba-accelerated analysis base object.

Parameters:
trajectoryMDAnalysis.coordinates.base.ReaderBase

Simulation trajectory.

verbosebool, default: True

Determines whether detailed progress is shown.

**kwargs

Additional keyword arguments to pass to MDAnalysis.analysis.base.AnalysisBase.

Methods

run

Performs the calculation.

save

Saves results to a binary or archive file in NumPy format.

run(start: int = None, stop: int = None, step: int = None, frames: slice | ndarray[int] = None, n_threads: int = None, verbose: bool = None, **kwargs) NumbaAnalysisBase[source]

Performs the calculation.

Parameters:
startint, optional

Starting frame for analysis.

stopint, optional

Ending frame for analysis.

stepint, optional

Number of frames to skip between each analyzed frame.

framesslice or array-like, optional

Index or logical array of the desired trajectory frames.

n_threadsint, keyword-only, optional

Number of threads to use for analysis.

verbosebool, optional

Determines whether detailed progress is shown.

**kwargs

Additional keyword arguments to pass to MDAnalysis.lib.log.ProgressBar.

Returns:
selfNumbaAnalysisBase

Analysis object with results.

save(file: str | TextIO, archive: bool = True, compress: bool = True, **kwargs) None

Saves results to a binary or archive file in NumPy format.

Parameters:
filestr or file

Filename or file-like object where the data will be saved. If file is a str, the .npy or .npz extension will be appended automatically if not already present.

archivebool, default: True

Determines whether the results are saved to a single archive file. If True, the data is stored in a .npz file. Otherwise, the data is saved to multiple .npy files.

compressbool, default: True

Determines whether the .npz file is compressed. Has no effect when archive=False.

**kwargs

Additional keyword arguments to pass to numpy.save(), numpy.savez(), or numpy.savez_compressed(), depending on the values of archive and compress.