calculate_relative_permittivity¶
- mdhelper.analysis.electrostatics.calculate_relative_permittivity(M: ndarray[float], temperature: float, volume: float, *, reduced: bool = False) float [source]¶
Calculates the relative permittivity (or static dielectric constant) \(\varepsilon_\mathrm{r}\) of a medium using the instantaneous dipole moments \(\mathbf{M}(t)\).
The dipole moment fluctuation formula [1] relates the relative permittivity to the dipole moment via
\[\varepsilon_\mathrm{r}=1+\frac{\overline{\langle\mathbf{M}^2\rangle -\langle\mathbf{M}\rangle^2}}{3\varepsilon_0 Vk_\mathrm{B}T}\]where the angular brackets \(\langle\,\cdot\,\rangle\) denote the ensemble average, the overline signifies the spatial average, \(\varepsilon_0\) is the vacuum permittivity, \(k_\mathrm{B}\) is the Boltzmann constant, and \(T\) is the system temperature.
Note
If residues (molecules) in your system have net charges, the dipole moments must be made position-independent by subtracting the product of the net charge and the center of mass or geometry.
- Parameters:
- Marray-like
Instantaneous dipole moments over \(N_t\) frames.
Shape: \((N_t,\,3)\).
Reference unit: \(\mathrm{e\cdotÅ}\).
- temperaturefloat
System temperature \(T\).
Note
If
reduced=True
, temperature should be equal to the energy scale. When the Lennard-Jones potential is used, it generally means that \(T^* = 1\), or temperature=1.Reference unit: \(\mathrm{K}\).
- volumefloat
System volume \(V\).
Reference unit: \(\mathrm{Å^3}\).
- reducedbool, keyword-only, default:
False
Specifies whether the data is in reduced units.
- Returns:
- dielectricfloat
Relative permittivity (or static dielectric constant).
References
[1]Neumann, M. Dipole Moment Fluctuation Formulas in Computer Simulations of Polar Systems. Molecular Physics 1983, 50 (4), 841–858. https://doi.org/10.1080/00268978300102721.